plantMetabolomicsProject

Metabolome-based discrimination of chrysanthemum cultivars for the efficient generation of flower color variations in mutation breeding.
http://metadb.riken.jp/db/plantMetabolomics/0.1/Project/RPMM0055

Metabolome-based discrimination of chrysanthemum cultivars for the efficient generation of flower color variations in mutation breeding.

Project

projcet ID
  • RPMM0055
title
  • Metabolome-based discrimination of chrysanthemum cultivars for the efficient generation of flower color variations in mutation breeding.
description
  • INTRODUCTION: The color variations of ornamental flowers are often generated by ion-beam and gamma irradiation mutagenesis. However, mutation rates differ significantly even among cultivars of the same species, resulting in high cost and intensive labor for flower color breeding. OBJECTIVES: We aimed to establish a metabolome-based strategy to identify biomarkers and select promising parental lines with high mutation rates using Chrysanthemum as the case study. METHODS: The mutation rates associated with flower color were measured in 10 chrysanthemum cultivars with pink, yellow, or white flowers after soft X-ray irradiation at the floret-formation stage. The metabolic profiles of the petals of these cultivars were clarified by widely targeted metabolomics and targeted carotenoid analysis using liquid chromatography-tandem quadrupole mass spectrometry. Metabolome and carotenoid data were subjected to an un-supervised principal component analysis (PCA) and a supervised logistic regression with least absolute shrinkage and selection operator (LASSO). RESULTS: The PCA of the metabolic profile data separated chrysanthemum cultivars according to flower color rather than mutation rates. By contrast, logistic regression with LASSO generated a discrimination model to separate cultivars into two groups with high or low mutation rates, and selected 11 metabolites associated with mutation rates that can be biomarkers candidates for selecting parental lines for mutagenesis. CONCLUSION: This metabolome-based strategy to identify metabolite markers for mutation rates associated with flower color might be applied to other ornamental flowers to accelerate mutation breeding for generating new cultivars with a wider range of flower colors.
comment
submission date
public release date
creator
contact person
principal investigator
submitter
references
funding source
  • Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP), “Technologies for creating next-generation agriculture, forestry and fisheries” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO)
experiment
other information
sub-project